
Estimating Generic 3D Room Structures from 2D Annotations

Introduction Pipeline
• Inputs are familiar 2D segmentation

• Each frame is annotated independently, without any correspondences

Input annotations and final reconstructions

Denys Rozumnyi Stefan Popov Kevis-Kokitsi Maninis Matthias Nießner Vittorio Ferrari

Evaluation
Goal: Create 3D room layouts from RGB video (no depth) → commonly available

Method: create 3D room layouts only from 2D annotations → easy for humans!

• Few (real) prior datasets, all requiring special acquisition devices (RGB-D, pano)

• The dataset is released here: https://github.com/google-research/cad-estate

 Human annotators

 Machine

per-element
visible parts

structural elements

visible parts

points sampled and tracked,
find correspondences, relabel

points on the edges

visible parts

structural elements

lift in 3D and estimate
infinite plane equations unproject segmentations,

compute union, cut planes

 Result: 3D mesh

Figure 6: 3D Room layout reconstruction examples. For each example scene, we show one or two
of the input annotations overlaid on the video frame (top), and the final reconstructed layout (bottom).

and larger depth error (row 7), compared to the using the complete loss (row 5). The perpendicularity
loss LP (4) has a smaller impact on overall performance (row 6).

4.3 Manual inspection

We assess here the quality of our 3D layouts by manual inspection of 50 randomly selected scenes
from RE10k and 20 from ScanNet. For each scene, we measure (1) the total number of ground-truth
structural elements in the scene; (2) the number of elements successfully reconstructed (recall); (3)
the number of spurious elements incorrectly created (enabling to measure precision). A structural
element is considered successfully reconstructed if the plane normal is correct and the spatial extent
is consistent with the 2D annotations (up to a 10% error in both cases). Note that humans cannot
verify the correct depth of each plane, as this is perceptually hard to judge. As Table 2 (right) shows,
quality is excellent with a recall of 98% and precision of 89% on RE10k.

4.4 Automatic layout estimation on our dataset

Most methods for 3D room layout estimation require special inputs, such as e.g. RGB-D fusion [40,
4, 8, 18], and therefore cannot be run on our dataset. Some methods input a single RGB image, but
they only estimate a 2D room layout (i.e. 2D projection of a 3D room layout), e.g. [25, 31, 73, 69,

9

Inputs Structure Visible Tracked points Edges Final layout

Figure 3: 3D room layout reconstruction on an example scene. Given an input video and manual
2D annotations of structural elements and their visible parts, we combine point tracks fitting, edge
matching, and perpendicularity constraints to generate a 3D room layout.

Assigning 2D point tracks to structural elements. The process just described also determines
which structural element each point track belongs to. Formally, the process assigns a structural
element index j to each track xt, which we denote by a(t) = j. This will be useful below, as we try
to fit a 3D plane based on the evidence from the point tracks assigned to it.

3.3 Estimating 3D plane equations

Each structural element is represented by its 3D plane equation and spatial extent. The equation
p has 4 parameters representing the plane’s 3D normal and offset from the origin. To estimate it,
we optimize the parameters of all planes jointly, so as to minimize a loss involving three terms.
First, the 3D plane should fit well the 3D geometry induced by the tracked points assigned to that
structural element (Fitting point tracks loss). Second, the edges between structural elements in the
2D annotations should correspond to the intersections of their corresponding 3D planes (Edge loss).
Third, vertical walls should be perpendicular to the floor and ceiling (Perpendicularity loss).

Fitting point tracks loss. Consider a 2D point track xt assigned to a structural element j = a(t).
Now also consider a candidate plane equation pj for that structural element, determining the plane in
3D space. We can now unproject a 2D point xf

t from the track into a straight line in 3D space, given
the camera parameters for frame f (Fig. 4). This line will intersect the candidate plane at a 3D point
Xf

t . We denote this process of unprojection and plane intersection as Xf
t = unproj(xf

t , pj , f), and
refer to it as “unprojecting point xf

t onto plane pj”.

In practice, all 2D points xf
t within a single track xt correspond to the same point in 3D space. Hence,

we define a loss that prefers a plane equation pj such that the 3D unprojection lines for each point
within a point track intersect that plane at the same point:

1

|xt|
X

f

��unproj(xf
t , pj , f)�Xt

�� (1)

where Xt =
1

|xt|
P

f unproj(xf
t , pj , f) is the average over all unprojected points for the track; the

sum over f runs over all frames where track xt is visible; and |xt| is the number of such frames (i.e.
the track length). Basically, the loss penalizes the distance of each frame’s unprojections to their
mean. The complete loss runs over all point tracks t:

LT =
1

T

TX

t=1

1

|xt|
X

f

��unproj(xf
t , pa(t), f)�Xt

�� (2)

Note how this includes all point tracks that are assigned to various different planes, as marked in a(t).

Edge loss. This loss encourages the intersection of two structural elements in 3D to project to the
edge between their 2D annotations. In other words, an edge between two structural elements in the
2D annotations unprojects to the intersection of the corresponding 3D planes. The core constraint
can be phrased formally as: when the same 2D point is unprojected onto two different 3D planes, the
resulting 3D points will be equal only if the two 3D planes intersect at that 3D point.

5

Runs
RE10k ScanNet [11]

IoU" IoU" ✏ #

Ours (full method) 100 0.89 0.90 0.22
Ours (no quality control) 100 0.83 0.85 0.30
Ours (no quality control) 30 0.81 0.84 0.33
Ours (no quality control) 1 0.72 0.79 0.36

Ours (no quality control) 10 0.90 0.84 0.33
No perpend. loss LP 10 0.80 0.83 0.34
No edge loss LE 10 0.72 0.84 0.33
No points tracking LT 10 0.34 Fail Fail

RE10k (no depth) ScanNet [11] (depth)

Pr%" Rc%" IoU" Pr%" Rc%" IoU"

Ours 88.5 98.0 0.89 83.8 91.2 0.90

Table 2: Left Top row: our main results, with our full method. Rows 2-4: ablation removing the
automatic quality control filter and reducing the number of runs R. Rows 5-8: ablation removing
parts of the loss. Right Manual inspection on 50 randomly selected scenes from RE10k and 20 from
ScanNet. We report precision and recall of whether a structural element is successfully reconstructed.

to those measures (Sec. 4.2), and additionally also by manual inspection (Sec. 4.3). Finally, we
evaluate a state-of-the-art 2D layout estimation method [31] on our dataset (Sec. 4.4).

4.1 Evaluation measures

Reprojection IoU. We first measure quality based on the consistency of our reconstructed layouts
with the input 2D annotations, as defined in Sec. 3.5.

Depth error. As a second measure, we compute the average absolute depth error ✏. This is computed
only on the visible parts of structural elements, as other parts might contain furniture occluding them.
We produce depth maps by rendering our 3D room layout at each frame, and then compare them
to the ground-truth depth maps. These are available for ScanNet [11], which was acquired with an
RGB-D sensor, but not for RE10k, which contains pure RGB videos.

4.2 Results

Full method on ScanNet. We validate the quality of our reconstructions on the ScanNet dataset [11]
(50 random scenes), based on the ground-truth depth maps released with it. These have been acquired
with a structured light scanner and are therefore high quality. As Table 2 (left, top row) shows, the
average depth error ✏ is 0.22 meters. To put this in context: walls are 2.7 meters tall and 3 meters long
on average, and rooms in ScanNet have large spatial extent of 7 meters on average. Hence, a depth
error of only 0.22 meters represents high quality. This is further confirmed by a very high average
Reprojection IoU of 0.90 on ScanNet.

Full method on RE10k. Our full method achieves a high Reprojection IoU of 0.89 on RE10k
(Table 2, left, top row). This indicates high quality 3D reconstructions recovering most structural
elements and their spatial extent correctly.

Ablation study on RE10k and ScanNet. Table 2 (left, rows 2-8) show several ablations. In row
2 we turn off the quality control filter of Sec. 3.5. This results is significantly worse Reprojection
IoU and depth error, demonstrating that our quality control filter is working well. From row 2 to 4
we gradually reduce the number of runs R. Both Reprojection IoU and depth error get continuously
worse with fewer and fewer runs. The reconstruction quality is substantially higher at R = 100 than
for just a single run, demonstrating the value of having multiple runs and of our run selection criterion
(Sec. 3.5). Also note how in all these experiment better IoU always corresponds to better depth error
on ScanNet, confirming that Reprojection IoU is a good indicator of reconstruction quality.

Finally, we ablate the components of our joint loss (Sec. 3.3) in rows 5-8. The fitting point tracks loss
LT (2) is the most important one since the optimization fails completely (results in NaNs gradients) on
ScanNet scenes (row 8). On the few scenes from RE10k where optimization converged, Reprojection
IoU is very low (0.34 on average). Disabling the edge loss LE (3) leads to significantly lower IoU

8

• Low depth errors and very high IoU values
→ high quality reconstructions

• Automatic quality control:
reject reconstructions with IoU < 0.8
→ IoU and depth worse when turned off
→ works well

• Run method many times and select automatically based on IoU
→ indirectly minimize depth error → good to have many runs

• We train and evaluate a baseline method [31] that performs at the state-of-the-art on the
existing datasets, with a low error around 6% − 7%.

• Instead, it performs much worse on our dataset (26%), demonstrating it offers a harder
challenge than the previous ones

LSUN dataset [66] Hedau dataset [19] Our dataset

Pixel Error (%)# Pixel Error (%)# Pixel Error (%)#
Hedau et al. [19] 24.23 21.20 -
Mallya et al. [35] 16.71 12.83 -
DeLay [12] 10.63 9.73 -
CFILE [45] 7.57 8.67 -
Zhang et al. [68] 6.58 12.70 -
ST-PIO [71] 5.29 6.60 -
Lin et al. [31] (baseline) 6.25 7.41 26.3

Table 3: Baseline method. We train and evaluate the method [31] on our dataset, following the train
and test split. We compare to existing datasets [66, 19] and to other layout estimation methods.

54, 19, 20, 13, 14, 34, 33]. While our dataset offers 3D layout annotations, we evaluate here a 2D
estimation method [31] on it. This allows us to get a sense of the difficulty of our dataset and to
position it relative to other existing datasets.

We train and evaluate the method [31] on our dataset. To this end, we render our 3D layouts using
the camera poses of the video frames, and we run [31] on each frame independently. In Table 3,
we report results of [31] on our dataset, and of various methods on two existing datasets [66, 19].
The method [31] performs at the state-of-the-art on the existing datasets, with a low error around
6%� 7%. Instead, it performs much worse on our dataset (26%), demonstrating it offers a harder
challenge than the previous ones.

5 Limitations

Our 3D room structures only contain surfaces that are observed in the videos. We do not produce
geometry for the unobserved parts. For example, if a floor is partially visible behind a wall, we
only produce geometry for what we can observe from it in the video. Ideally, we would also like to
generate plausible geometry for the unobserved parts.

Another limitation is that we reconstruct only planar surfaces. Our current method cannot handle
curved surfaces, which sometimes can occur in upscale apartments.

6 Conclusion

We proposed a novel way to annotate 3D room layouts from only 2D annotations. We annotate 2246
general 3D room layouts on a dataset of real-estate RGB videos from YouTube, which we have
publicly released. Extensive evaluations confirmed the high quality of this dataset.

Acknowledgements. We thank Prabhanshu Tiwari and Mohd Adil for coordinating the annotation
process, and all the annotators who have contributed to creating the dataset.

10

Spatial extent refinement, before (top) and after (bottom).

We cut hanging walls extending outside the room boundary,

and fill in the holes between neighboring planes (blue).

be
fo

re
af

te
r

Figure 5: Spatial extent refinement, before (top) and after (bottom). We cut hanging walls extending
outside the room boundary, and fill in the holes between neighboring planes (blue).

Refinement. As shown in Fig. 5 (top), the resulting mesh contains artifacts, e.g. hanging wall
extending outside the room boundary and small holes between structural elements. Moreover,
structural elements never intersect precisely in the 3D space. To address this shortcoming, we
introduce a refinement procedure, which ensures that structural elements intersect precisely in the 3D
space. We extend each plane’s unified polygon towards its neighboring planes until they intersect in
3D. If such extension does not increase the size of the polygon by more than 10%, it is accepted. This
procedure fills in the holes between neighboring 3D polygons. Finally, for each pair of intersecting
3D polygons, we find their intersection line and cut the smallest part if it is smaller than 10% of the
total area. As shown in Fig. 5, the room layout becomes more visually pleasing after refinement.

Doors and windows. Annotators are asked to label all doors and windows separately unless the door
is open, in which case the next room must be annotated. We assign each door and window a structural
element index, with which it shares most of its border. Then, the door and window segmentation
masks are used for spatial extent calculation of their assigned structural elements. Finally, we also
calculate spatial extent of each door and window and include them in the final reconstructed mesh.

3.5 Automatic quality control

The 3D estimation method in Sec. 3.1 to 3.3 can sometimes fail. This typically happens in the
presence of large annotator errors or insufficient camera motion. To ensure high quality, we introduce
an automatic quality control mechanism.

We measure Reprojection IoU by rendering the estimated 3D layout with the given camera parameters
for each video frame. Such rendering resembles the input 2D structural elements annotation. We
compute the similarity between the rendering of each structural element and its annotation as
Intersection-over-Union (IoU), and we average over all structural elements and frames in a video (e.g.
Fig. 3, comparing structural elements annotations to rendered final layouts).

Since our 3D estimation method is stochastic due to randomly sampled point tracks and stochastic
optimization, each run gives different results. We automatically select the best run for each video
after R = 100 repetitions, based on Reprojection IoU. We then discard all videos with reprojection
IoU below 0.8, keeping only high quality reconstructions.

4 Experiments

We use our method from Sec. 3 to annotate the RealEstate10k dataset [75] (RE10k), which gathered
videos of indoor scenes from YouTube. A total of 21 human raters annotated 3743 of those videos.
After keeping only high quality ones (Sec. 3.5), this results in 2246 3D layouts in our dataset. Each
video lasts from 3 to 10 seconds, with 6.5 seconds on average, recorded at 30 frames per second. We
annotate one frame per second to avoid redundancy, but use all frames for point tracking (Sec. 3.3).
Finally, for evaluation purposes, we also annotate 50 scenes from the ScanNet dataset [11].

In the following subsections, we present evaluation measures based on ground-truth 2D segmentations
and 3D depth (Sec. 4.1), evaluate the quality of our annotations on ScanNet [11] and RE10k according

7

Given an input video and manual 2D annotations of structural elements and their visible parts,

we combine point tracks fitting, edge matching, and perpendicularity constraints to

generate a 3D room layout.

Method

