Estimating Generic 3D Room Structures from 2D Annotations ETHZürich Google Research Kevis-Kokitsi Maninis Matthias Nießner Stefan Popov Vittorio Ferrari Denys Rozumnyi

Introduction

Goal: Create 3D room layouts from RGB video (no depth) \rightarrow commonly available **Method**: create 3D room layouts only *from 2D annotations* \rightarrow *easy* for humans! • Few (real) prior datasets, all requiring special acquisition devices (RGB-D, pano) The dataset is released here: https://github.com/google-research/cad-estate

Method

Given an input video and manual 2D annotations of structural elements and their visible parts, we combine point tracks fitting, edge matching, and perpendicularity constraints to generate a 3D room layout.

Inputs

Structure

Visible

Tracked points Edges

Pipeline

- Inputs are familiar 2D segmentation
- Each frame is annotated *independently*, without any correspondences

lift in 3D and estimate

We cut hanging walls extending outside the room boundary, and fill in the holes between neighboring planes (blue).

Spatial extent refinement, before (top) and after (bottom).

Evaluation

- Low depth errors and \rightarrow high quality reconst
- Automatic quality cont reject reconstructions \rightarrow IoU and depth wors \rightarrow works well
- \rightarrow indirectly minimize depth error \rightarrow good to have many runs
- existing datasets, with a low error around 6% 7%.
- challenge than the previous ones

Input annotations and final reconstructions

very high IoU values		Runs	RE10k	ScanNet [11]		
tructions			IoU†	IoU↑	$\epsilon\downarrow$	-
trol:	Ours (full method)	100	0.89	0.90	0.22	_
with IoU < 0.8 se when turned off	Ours (no quality control) Ours (no quality control) Ours (no quality control)	100 30 1	0.83 0.81 0.72	0.85 0.84 0.79	0.30 0.33 0.36	

Run method many times and select automatically based on IoU

• We train and evaluate a baseline method [31] that performs at the state-of-the-art on the

• Instead, it performs much worse on our dataset (26%), demonstrating it offers a harder

	LSUN dataset [66]	Hedau dataset [19]	Our dataset
	Pixel Error (%)↓	Pixel Error (%)↓	Pixel Error (%)↓
	24.23	21.20	_
	16.71	12.83	_
	10.63	9.73	_
	7.57	8.67	_
	6.58	12.70	_
	5.29	6.60	_
ine)	6.25	7.41	26.3