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Motivation

Shape-from-Blur [1] and Motion-from-Blur [2] tackle the rigid body tracking and reconstruction from blurry images.
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How to address the same problem for the soft body? Best application case: Human body motion blur.

Challenge

e Dataset almost unavailable

e Many factors determine blur amount 5 ms 28 ms 50 ms 100 ms
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Addressing Ambiguity of Joint Motion

Single Frame
Short Temporal Motion Prior as a loss term during optimization
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Multiframes:

Minimize the difference of retrieved joints’ position J and
joints’ rotation @ and their first order derivatives between t =N
of current blur frame and t =1 of the next blur frame
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We propose the first method to reconstruct sub-frame human motion and textured shape from substantially blurred images.
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-> Key idea: - Core of method.
Approaching the problem from a generative viewpoint and The render reconstruction losses(lImage formation loss and Matting loss)
describing a fully differentiable forward process to generate that allow to solve the inverse problem with standard gradient descent
blurry images from a given 3D human model. methods.
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