
GT
O

ur
s

BI
N[

12
]+

[5
]

IV.. Experiments

III.. Pipeline

II.. Setup
Input: 

I.. Introduction

Human Pose Tracking from Blurry Images 
Yiming Zhao1 Denys Rozumnyi1 Jie Song1 Otmar Hilliges1 Marc Pollefeys1,3 Martin R. Oswald1,2

ETH Zürich1, Universiteit van Amsterdam2, Microsoft3

Single Frame

Differentiable rendered soft-silhouette 

Differentiable rendered foreground object 

Mesh driven by SMPL [3]

Motivation

Shape-from-Blur [1] and Motion-from-Blur [2] tackle the rigid body tracking and reconstruction from blurry images. 

How to address the same problem for the soft body? Best application case: Human body motion blur.

Challenge

Dataset almost unavailable

Many factors determine blur amount

Blur Formation 

Real Scenario

Exposure time, Motion speed

Output: 

Initialize:

B Clear Background I Blur Input Extracted Matting [4] ini Initial Pose Estimation
METRO[5]+Registration[14] 

Subframes with rendered SMPL mesh

Novel Views

Blur rate Datas et:

Synthetic Dataset: Generated from AMASS[6] , CAPE[7], 
BG-20K[8], SURREAL[9]

Semi-real Dataset: B-AIST++[10]

Original[7] Textured[9] Blurred

+shape parameters +
Txture

We define a scale to quantify the level of the 
blur amount.
The union of all projected sub-frame silhouettes 
and divide it by the first silhouette.

Assumption: Each blur frame contains a short temporal motion of period N

Target: Retrieve the motion in subframes for timestamps t from 1 to N

Multiframes

V.. Conclusion
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Key idea:
The render reconstruction losses(Image formation loss and Matting loss) 
that allow to solve the inverse problem with standard gradient descent 
methods.

Approaching the problem from a generative viewpoint and 
describing a fully differentiable forward process to generate 
blurry images from a given 3D human model.

Optimization Based

Differentiable Rendering

Outputs temporal motion sequence 

Single Frame
Short Temporal Motion Prior as a loss term during optimization 

Addressing Ambiguity of Joint Motion 

Multiframes:
Minimize the difference of retrieved joints’ position J and 
joints’ rotation and their first order derivatives between t =N
of current blur frame and t = 1 of the next blur frame 
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t = 1

…

Current i Next i+1

t = N t = 1
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We propose the first method to reconstruct sub-frame human motion and textured shape from substantially blurred images.
Core of method:
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