
În(·) =
Z n�✏

N

n�1
N

RF

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧+

1�
Z n�✏

N

n�1
N

RS

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧

!
·B

(1)

Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred Objects in Videos
Denys Rozumnyi1,4 Martin R. Oswald3,1 Vittorio Ferrari2 Marc Pollefeys1

1Department of Computer Science, ETH Zurich 2Google Research Zurich
3University of Amsterdam 4Czech Technical University in Prague

Introduction
We jointly estimate the 3D motion, 3D shape, and texture of motion-
blurred objects by optimizing over multiple motion-blurred frames.
Contributions:
Ø First method to optimize over a video instead of a single frame [1-5].
Ø Better motion modeling, e.g., with bounces and acceleration.
Ø Explicit exposure gap modeling and its automatic estimation.

Classical motion blur problem formulation for a single frame:

Model fitting
Ø All parameters are optimized to re-render the input video as closely as

possible by minimizing the pixel-wise reprojection error using
differentiable rendering [6].

Qualitative results
Ø Significantly better performance at bounces:

Implementation and more results on GitHub:
References
[1] D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021
[2] D. Rozumnyi et al.: DeFMO @ CVPR 2021
[3] D. Rozumnyi et al.: FMODetect @ ICCV 2021
[4] D. Rozumnyi et al.: TbD-3D @ CVPR 2020
[5] J. Kotera et al.: Restoration of Fast Moving Objects @ TIP 2020
[6] W. Chen et al.: DIBR @ NeurIPS 2019

Deblurred, Temporally Super-resolved Output

Bounce!

Deep neural network

Data

Loss function

DR Differentiable renderer

Op Image Operation

Generated Video

Foreground Silhouettes

(higher frame rate)

DR

DR

DR

DR

DR

DR

Constant Mesh Parameters

Mesh Texture Map

Motion Parameters

Bounce
time

translation, rotation with
velocity and accelation

Trajectory
before bounce

Trajectory
after bounce

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

CVPR
#875

CVPR
#875

CVPR 2022 Submission #875. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Cropped
Input Video

Generated
Blurred Video

Generated Video

Average
+Matting Object Trajectory Representation

⌘
·B .

… …

…

Exposure Time
Exposure Gap

Object Parametrization

Foreground Silhouettes

Padded
Cropping

Clean
Background

Video

(higher framerate)

(input framerate) (input framerate)

Deep neural network

Data

Loss function

DR Differentiable renderer

Median Filter Blurred object
detection

Î(

Time

Input Video with Blurred Object Deblurred, Temporally Super-resolved Output

Clean
Background

Texture
smoothness loss

Laplacian shape
regulariation loss

) + LT (

· LL

Bounce!

Mesh Texture Map

Bounce
time

…

DR

DR

DR

DR

DR

DR

DR

DR

DR

Trajectory
before bounce

Trajectory
after bounce

translation, rotation with
velocity and accelation

Op Image Operation

Initial
Masksmasks M⌧

object location

Video formation loss

Silhouette loss LS

Average
+Matting

Average
+Matting

DeFMO

LV (⇥,⌦|V,B) =

) =
1

N

N�1X

n=0

kIn � În(⇥,⌦|B)k

Figure 2. Overview of Motion-from-Blur. For a video of a motion-blurred object, we estimate its 3D motion trajectory, 3D shape, and
appearance. From right to left, the pipeline can be interpreted as a generative model. Starting from all parameters for an object and its
motion trajectory, we render high-frame rate videos with the object appearance (foreground) and a matting mask. Together with the known
background we a generate motion-blurred video of the object that should match the input video as good as possible. At test time, we
optimize all object parameters (and the exposure time) of this inverse problem by backpropagating the appearance differences through the
differentiable renderer (left to right). We initialize the optimization using the DeFMO method [30], which provides rough silhouettes of
the blurred object. Video source: YouTube.

the image formation model for each video frame În as our
model would render it given all parameters above:

În(⇥,⌦, ✏|B) =

Z n�✏
N

n�1
N

RF

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧+

+

1�
Z n�✏

N

n�1
N

RS

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧

!
·B ,

(6)

where the interval bounds for frame În go from the begin-
ning of its exposure time when the shutter opens at time
⌧ = n�1

N
to the end of its exposure time when the shut-

ter closes at time ⌧ = n�✏

N
. Consequently, the object is

not observed between ⌧ = n�✏

N
and ⌧ = n

N
. As defined

previously, the function M first rotates the mesh ⇥ by the
3D rotation Q(⌧) and then moves it by the 3D translation
T (⌧). Mesh rendering is implemented by Differentiable
Interpolation-Based Rendering [2], denoted by RF for the
appearance and by RS for the silhouette. As all previous
methods for fast moving object deblurring and 3D recon-
struction, we compute the background B as the median of
all frames In in the input video V .

Please note that our modeling is a strict generalization of
SfB [31] in case of N = 1 and linear trajectory.

3.2. Model fitting

Loss function. The main driving force of the proposed
approach is the video reconstruction loss

LV (⇥,⌦, ✏|V,B) =
1

N

NX

n=1

kIn � În(⇥,⌦, ✏|B)k , (7)

This loss is low when the the frames În rendered by our
model via (6) are close to the input frames In.

In order to make the optimization easier and well-
behaved, we apply auxiliary loss terms and regularizers,
similar to [31]. We briefly summarize them here, and re-
fer to [31] for details. The silhouette consistency loss LS

helps localize the object in the image faster and serves as
initialization for estimating the 3D mesh and its translation.
It is defined as an intersection over union (IoU) between the
2D mesh silhouettes, rendered by our method. Vitto: mask?
It seems you are using these two words interchangeably; if
they mean the same, then use only one; if they mean sth
different then let’s discuss during our next meeting how to
position the two versions estimated by our method and the
input DeFMO masks [30] Vitto: too abrupt; tell that you
first run DeFMO etc.:

LS = 1�
Z 1

0
IoU

M⌧ ,RS

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆!
d⌧.

(8)

Furthermore, we add the commonly employed [2, 13,
26, 31, 40] total variation and Laplacian regularizers. Total
variation LT (⇥) on texture maps encourages the model to
produce smooth textures, and Laplacian regularizer LL(⇥)
promotes smooth meshes.

Finally, the joint loss is a weighted sum of all four loss
terms:

L(⇥,⌦, ✏|V,B) = �V · LV (⇥,⌦, ✏|V,B) + LT (⇥)+

+ LS(⇥,⌦, ✏|V,B) + �L · LL(⇥) .

(9)

Optimization. Fig. 2 shows an overview of the pipeline.
We backpropogate the joint loss up to the mesh ⇥, mo-
tion parameters ⌦, and exposure fraction ✏. Optimization
is done with ADAM [12] using a learning rate of 0.1. At

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

CVPR
#875

CVPR
#875

CVPR 2022 Submission #875. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

at the right image location, directly encoding the object tra-
jectory. DeFMO was trained on a synthetic dataset with 3D
objects from ShapeNet [1]. Yet it was shown to generalize
to real-world images.
Single-frame 3D reconstruction of fast moving objects.

The only prior work capable of 3D reconstruction of fast
moving objects is Shape-from-Blur [31]. Instead of merely
recovering the 2D object projections (F⌧ ,M⌧), they recon-
struct the object’s 3D shape mesh ⇥ as well as 3D motion.
The latter is represented as the 3D translation t and 3D ro-
tation r, defining the object’s pose at the beginning of the
exposure time (⌧ = 0), and the offsets �t and �r, moving
the object to its pose at the end of the exposure time (⌧ = 1).
With these definitions, the image formation model becomes

I =

Z 1

0
RF

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�
d⌧+

+
⇣
1�

Z 1

0
RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�
d⌧

⌘
·B ,

(5)

where the function M transforms the mesh ⇥ by the given
3D translation and 3D rotation. Energy minimization is
constructed from (5) to find the 3D mesh and motion pa-
rameters that would re-render the input image I as closely
as possible. To make minimization feasible, mesh rendering
is made differentiable using Differentialbe Interpolation-
Based Rendering (DIB-R) [2], denoted by RF and RS for
the appearance and 2D object silhouette respectively. To
differentiate from 2D masks M⌧ , silhouettes are used to de-
note real renderings of a 3D object mesh. In contrast to
Shape-from-Blur, our method models more complex trajec-
tories, estimates the exposure gap, and takes into account
several frames jointly, thereby allowing temporally con-
sistent predictions and more completely reconstructed 3D
shape models.
3D shape from sharp images. Many methods for 3D re-
construction have been proposed, both for single-frame [5,
24, 38, 40, 42] and multi-frame setting [20, 32, 33, 36]. But
these methods assume sharp objects in the scene (the meth-
ods listed in previous paragraphs are the only ones dedi-
cated to fast moving objects). In other words, they either
assume that an object moves slowly compared to the camera
frame rate (or, equivalently, that the camera moves slowly).

3. Method

When images are captured by a conventional camera, the
camera opens its shutter to allow the right amount of light
to reach the camera sensor. Then, the shutter closes, and
the whole process is repeated until the required number of
frames are captured. This physical reality of the camera
capturing process leads to two phenomena, which we model
and exploit in our optimization. The first one is motion

blur that appears when the object moves while the shutter
is open. The second one is the exposure gap that makes
the camera ‘blind‘ when the shutter is closed and thus not
observing the moving object for some parts of its motion.

We assume the input is a video stream V = {I1, . . . , IN}
that captures a fast moving object. The desired output of
our method is a single textured 3D object mesh ⇥, its mo-
tion parameters ⌦ consisting of a continuous 3D transla-
tion and 3D rotation at every point in time ⌧ during the
video duration, and the exposure gap ✏ (a real-valued pa-
rameter). In Sec. 3.1, we introduce these parameters and
a video formation model that takes them and renders some
video frames. In case that by chance we know real values
of all parameters, we would render the input video V . Then
in Sec. 3.2, we show how to optimize those parameters to
re-render the input video frames as closely as possible.

3.1. Modeling

Mesh modeling. The mesh parameters ⇥ consist of an in-
dex of the prototype mesh, vertex offsets from its initial ver-
tex positions to deform the mesh, and the texture map. We
use a set of prototype meshes accounts for different mesh
complexity and different genus number. Thus, the set of
prototype meshes contains a torus and two spheres with dif-
ferent number of vertices. The texture mapping from ver-
tices to the 2D location on the texture map is assumed to be
fixed. Similarly, the mesh triangular faces consist of fixed
sets of edges that connect vertices.
Motion modeling. The object motion ⌦ is composed
of continuous 3D translations T (⌧) 2 R3 and 3D rota-
tions represented by quaternions Q(⌧) 2 R4. Both trans-
lations and rotations are viewed from the camera perspec-
tive, which is assumed to be static. We assume that they
are defined at all points in time ⌧ 2 [0, 1], spanning the
duration of the entire input video. We implement the func-
tions T (⌧) and Q(⌧) as piece-wise polynomials, and their
parameters are the polynomial coefficients. More precisely,
we use piece-wise quadratic functions with two connected
pieces, which are able to model one bounce, as well as ac-
celerating motions (e.g. a falling object).
Exposure modeling. We denote the exposure gap as a
real-valued parameter ✏ 2 [0, 1] that represents the fraction
of the duration of a frame during which the camera shut-
ter is closed. In other words, it is the duration of closed
shutter divided by the duration of one shutter cycle. A hy-
pothetical full exposure camera that never closes its shutter
would result in ✏ = 0. In most cases, conventional cameras
would set their exposure gap ✏ close to 0 for dark environ-
ments to get as much light as possible and close to 1 for very
bright environments to avoid overexposure. Consequently,
the lower the exposure gap ✏, the more motion blur will be
in the image.
Video formation model. We are now ready to present

3

Prototypes

Generated
Blurred Video

10.0 15.0 20.0 25.0 30.0 35.0

0.02

0.04

0.06

PSNR

Im
ag

ef
or

ma
tio

nl
os

sL
I

Data
Trend

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.02

0.04

0.06

SSIM

Im
ag

ef
or

ma
tio

nl
os

sL
I

Data
Trend

Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧+

⇣
1�

Z 1

0
RS

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧

⌘
·B .

(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)

4

Clean
Background

Video

(input frame rate)

Median Filter

Clean
Background

Averaging
+Matting

Averaging
+Matting

Averaging
+Matting

Averaging
+Matting

Averaging
+Matting

Averaging
+Matting

Cropped
Input Video

Exposure Time
Exposure Gap

Padded
Cropping

(input frame rate)

Blurred object
detection

10.0 15.0 20.0 25.0 30.0 35.0

0.02

0.04

0.06

PSNR

Im
ag

ef
or

ma
tio

nl
os

sL
I

Data
Trend

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.02

0.04

0.06

SSIM

Im
ag

ef
or

ma
tio

nl
os

sL
I

Data
Trend

Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧+

⇣
1�

Z 1

0
RS

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧

⌘
·B .

(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)

4

Time

Initial
Masks

ae
ro

bi
e

De
FM

O
[1

1]

0.8
26

31
.98

Sf
B

(o
ur

s)

0.8
49

33
.07

GT

vo
lle

yb
all

De
FM

O
[1

1]

0.7
67

25
.29

Sf
B

(o
ur

s)

0.9
08

28
.11

GT

fo
ot

ba
ll

De
FM

O
[1

1]

0.6
63

27
.21

Sf
B

(o
ur

s)

0.8
23

29
.41

GT

SS
IM

":
PS

NR
":

B Î / I Temporal super-resolution

Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU

⇣
M⌧ ,RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�⌘
d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159

5

DeFMO [2]

✏
<latexit sha1_base64="4l8NJYEGBb8CJPn2HAScgSn1P5c=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEVyURQZdFNy4r2Ae0oUwmt+3QyYOZiVBD8VfcuFDErf/hzr9xkmahrQcGDufc1xwvFlxp2/62Siura+sb5c3K1vbO7l51/6CtokQybLFIRLLrUYWCh9jSXAvsxhJp4AnseJObzO88oFQ8Cu/1NEY3oKOQDzmj2kiD6lE/n5FK9GeVPsaKi0yu2XU7B1kmTkFqUKA5qH71/YglAYaaCapUz7Fj7aZUas4EmsGJwpiyCR1hz9CQBqjcNN88I6dG8ckwkuaFmuTq746UBkpNA89UBlSP1aKXif95vUQPr9yUh3GiMWTzRcNEEB2RLAric4lMi6khlElubiVsTCVl2gRWMSE4i19eJu3zumPXnbuLWuO6iKMMx3ACZ+DAJTTgFprQAgaP8Ayv8GY9WS/Wu/UxLy1ZRc8h/IH1+QPplZWB</latexit><latexit sha1_base64="4l8NJYEGBb8CJPn2HAScgSn1P5c=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEVyURQZdFNy4r2Ae0oUwmt+3QyYOZiVBD8VfcuFDErf/hzr9xkmahrQcGDufc1xwvFlxp2/62Siura+sb5c3K1vbO7l51/6CtokQybLFIRLLrUYWCh9jSXAvsxhJp4AnseJObzO88oFQ8Cu/1NEY3oKOQDzmj2kiD6lE/n5FK9GeVPsaKi0yu2XU7B1kmTkFqUKA5qH71/YglAYaaCapUz7Fj7aZUas4EmsGJwpiyCR1hz9CQBqjcNN88I6dG8ckwkuaFmuTq746UBkpNA89UBlSP1aKXif95vUQPr9yUh3GiMWTzRcNEEB2RLAric4lMi6khlElubiVsTCVl2gRWMSE4i19eJu3zumPXnbuLWuO6iKMMx3ACZ+DAJTTgFprQAgaP8Ayv8GY9WS/Wu/UxLy1ZRc8h/IH1+QPplZWB</latexit><latexit sha1_base64="4l8NJYEGBb8CJPn2HAScgSn1P5c=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEVyURQZdFNy4r2Ae0oUwmt+3QyYOZiVBD8VfcuFDErf/hzr9xkmahrQcGDufc1xwvFlxp2/62Siura+sb5c3K1vbO7l51/6CtokQybLFIRLLrUYWCh9jSXAvsxhJp4AnseJObzO88oFQ8Cu/1NEY3oKOQDzmj2kiD6lE/n5FK9GeVPsaKi0yu2XU7B1kmTkFqUKA5qH71/YglAYaaCapUz7Fj7aZUas4EmsGJwpiyCR1hz9CQBqjcNN88I6dG8ckwkuaFmuTq746UBkpNA89UBlSP1aKXif95vUQPr9yUh3GiMWTzRcNEEB2RLAric4lMi6khlElubiVsTCVl2gRWMSE4i19eJu3zumPXnbuLWuO6iKMMx3ACZ+DAJTTgFprQAgaP8Ayv8GY9WS/Wu/UxLy1ZRc8h/IH1+QPplZWB</latexit><latexit sha1_base64="4l8NJYEGBb8CJPn2HAScgSn1P5c=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEVyURQZdFNy4r2Ae0oUwmt+3QyYOZiVBD8VfcuFDErf/hzr9xkmahrQcGDufc1xwvFlxp2/62Siura+sb5c3K1vbO7l51/6CtokQybLFIRLLrUYWCh9jSXAvsxhJp4AnseJObzO88oFQ8Cu/1NEY3oKOQDzmj2kiD6lE/n5FK9GeVPsaKi0yu2XU7B1kmTkFqUKA5qH71/YglAYaaCapUz7Fj7aZUas4EmsGJwpiyCR1hz9CQBqjcNN88I6dG8ckwkuaFmuTq746UBkpNA89UBlSP1aKXif95vUQPr9yUh3GiMWTzRcNEEB2RLAric4lMi6khlElubiVsTCVl2gRWMSE4i19eJu3zumPXnbuLWuO6iKMMx3ACZ+DAJTTgFprQAgaP8Ayv8GY9WS/Wu/UxLy1ZRc8h/IH1+QPplZWB</latexit>

Video
reconstruction loss

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

CVPR
#875

CVPR
#875

CVPR 2022 Submission #875. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Cropped
Input Video

Generated
Blurred Video

Generated Video

Average
+Matting Object Trajectory Representation

⌘
·B .

… …

…

Exposure Time
Exposure Gap

Object Parametrization

Foreground Silhouettes

Padded
Cropping

Clean
Background

Video

(higher framerate)

(input framerate) (input framerate)

Deep neural network

Data

Loss function

DR Differentiable renderer

Median Filter Blurred object
detection

Î(

Time

Input Video with Blurred Object Deblurred, Temporally Super-resolved Output

Clean
Background

Texture
smoothness loss

Laplacian shape
regulariation loss

) + LT (

· LL

Bounce!

Mesh Texture Map

Bounce
time

…

DR

DR

DR

DR

DR

DR

DR

DR

DR

Trajectory
before bounce

Trajectory
after bounce

translation, rotation with
velocity and accelation

Op Image Operation

Initial
Masksmasks M⌧

object location

Video formation loss

Silhouette loss LS

Average
+Matting

Average
+Matting

DeFMO

LV (⇥,⌦|V,B) =

) =
1

N

N�1X

n=0

kIn � În(⇥,⌦|B)k

Figure 2. Overview of Motion-from-Blur. For a video of a motion-blurred object, we estimate its 3D motion trajectory, 3D shape, and
appearance. From right to left, the pipeline can be interpreted as a generative model. Starting from all parameters for an object and its
motion trajectory, we render high-frame rate videos with the object appearance (foreground) and a matting mask. Together with the known
background we a generate motion-blurred video of the object that should match the input video as good as possible. At test time, we
optimize all object parameters (and the exposure time) of this inverse problem by backpropagating the appearance differences through the
differentiable renderer (left to right). We initialize the optimization using the DeFMO method [30], which provides rough silhouettes of
the blurred object. Video source: YouTube.

the image formation model for each video frame În as our
model would render it given all parameters above:

În(⇥,⌦, ✏|B) =

Z n�✏
N

n�1
N

RF

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧+

+

1�
Z n�✏

N

n�1
N

RS

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧

!
·B ,

(6)

where the interval bounds for frame În go from the begin-
ning of its exposure time when the shutter opens at time
⌧ = n�1

N
to the end of its exposure time when the shut-

ter closes at time ⌧ = n�✏

N
. Consequently, the object is

not observed between ⌧ = n�✏

N
and ⌧ = n

N
. As defined

previously, the function M first rotates the mesh ⇥ by the
3D rotation Q(⌧) and then moves it by the 3D translation
T (⌧). Mesh rendering is implemented by Differentiable
Interpolation-Based Rendering [2], denoted by RF for the
appearance and by RS for the silhouette. As all previous
methods for fast moving object deblurring and 3D recon-
struction, we compute the background B as the median of
all frames In in the input video V .

Please note that our modeling is a strict generalization of
SfB [31] in case of N = 1 and linear trajectory.

3.2. Model fitting

Loss function. The main driving force of the proposed
approach is the video reconstruction loss

LV (⇥,⌦, ✏|V,B) =
1

N

NX

n=1

kIn � În(⇥,⌦, ✏|B)k , (7)

This loss is low when the the frames În rendered by our
model via (6) are close to the input frames In.

In order to make the optimization easier and well-
behaved, we apply auxiliary loss terms and regularizers,
similar to [31]. We briefly summarize them here, and re-
fer to [31] for details. The silhouette consistency loss LS

helps localize the object in the image faster and serves as
initialization for estimating the 3D mesh and its translation.
It is defined as an intersection over union (IoU) between the
2D mesh silhouettes, rendered by our method. Vitto: mask?
It seems you are using these two words interchangeably; if
they mean the same, then use only one; if they mean sth
different then let’s discuss during our next meeting how to
position the two versions estimated by our method and the
input DeFMO masks [30] Vitto: too abrupt; tell that you
first run DeFMO etc.:

LS = 1�
Z 1

0
IoU

M⌧ ,RS

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆!
d⌧.

(8)

Furthermore, we add the commonly employed [2, 13,
26, 31, 40] total variation and Laplacian regularizers. Total
variation LT (⇥) on texture maps encourages the model to
produce smooth textures, and Laplacian regularizer LL(⇥)
promotes smooth meshes.

Finally, the joint loss is a weighted sum of all four loss
terms:

L(⇥,⌦, ✏|V,B) = �V · LV (⇥,⌦, ✏|V,B) + LT (⇥)+

+ LS(⇥,⌦, ✏|V,B) + �L · LL(⇥) .

(9)

Optimization. Fig. 2 shows an overview of the pipeline.
We backpropogate the joint loss up to the mesh ⇥, mo-
tion parameters ⌦, and exposure fraction ✏. Optimization
is done with ADAM [12] using a learning rate of 0.1. At

4

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

CVPR
#875

CVPR
#875

CVPR 2022 Submission #875. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Cropped
Input Video

Generated
Blurred Video

Generated Video

Average
+Matting Object Trajectory Representation

⌘
·B .

… …

…

Exposure Time
Exposure Gap

Object Parametrization

Foreground Silhouettes

Padded
Cropping

Clean
Background

Video

(higher framerate)

(input framerate) (input framerate)

Deep neural network

Data

Loss function

DR Differentiable renderer

Median Filter Blurred object
detection

Î(

Time

Input Video with Blurred Object Deblurred, Temporally Super-resolved Output

Clean
Background

Texture
smoothness loss

Laplacian shape
regulariation loss

) + LT (

· LL

Bounce!

Mesh Texture Map

Bounce
time

…

DR

DR

DR

DR

DR

DR

DR

DR

DR

Trajectory
before bounce

Trajectory
after bounce

translation, rotation with
velocity and accelation

Op Image Operation

Initial
Masksmasks M⌧

object location

Video formation loss

Silhouette loss LS

Average
+Matting

Average
+Matting

DeFMO

LV (⇥,⌦|V,B) =

) =
1

N

N�1X

n=0

kIn � În(⇥,⌦|B)k

Figure 2. Overview of Motion-from-Blur. For a video of a motion-blurred object, we estimate its 3D motion trajectory, 3D shape, and
appearance. From right to left, the pipeline can be interpreted as a generative model. Starting from all parameters for an object and its
motion trajectory, we render high-frame rate videos with the object appearance (foreground) and a matting mask. Together with the known
background we a generate motion-blurred video of the object that should match the input video as good as possible. At test time, we
optimize all object parameters (and the exposure time) of this inverse problem by backpropagating the appearance differences through the
differentiable renderer (left to right). We initialize the optimization using the DeFMO method [30], which provides rough silhouettes of
the blurred object. Video source: YouTube.

the image formation model for each video frame În as our
model would render it given all parameters above:

În(⇥,⌦, ✏|B) =

Z n�✏
N

n�1
N

RF

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧+

+

1�
Z n�✏

N

n�1
N

RS

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆
d⌧

!
·B ,

(6)

where the interval bounds for frame În go from the begin-
ning of its exposure time when the shutter opens at time
⌧ = n�1

N
to the end of its exposure time when the shut-

ter closes at time ⌧ = n�✏

N
. Consequently, the object is

not observed between ⌧ = n�✏

N
and ⌧ = n

N
. As defined

previously, the function M first rotates the mesh ⇥ by the
3D rotation Q(⌧) and then moves it by the 3D translation
T (⌧). Mesh rendering is implemented by Differentiable
Interpolation-Based Rendering [2], denoted by RF for the
appearance and by RS for the silhouette. As all previous
methods for fast moving object deblurring and 3D recon-
struction, we compute the background B as the median of
all frames In in the input video V .

Please note that our modeling is a strict generalization of
SfB [31] in case of N = 1 and linear trajectory.

3.2. Model fitting

Loss function. The main driving force of the proposed
approach is the video reconstruction loss

LV (⇥,⌦, ✏|V,B) =
1

N

NX

n=1

kIn � În(⇥,⌦, ✏|B)k , (7)

This loss is low when the the frames În rendered by our
model via (6) are close to the input frames In.

In order to make the optimization easier and well-
behaved, we apply auxiliary loss terms and regularizers,
similar to [31]. We briefly summarize them here, and re-
fer to [31] for details. The silhouette consistency loss LS

helps localize the object in the image faster and serves as
initialization for estimating the 3D mesh and its translation.
It is defined as an intersection over union (IoU) between the
2D mesh silhouettes, rendered by our method. Vitto: mask?
It seems you are using these two words interchangeably; if
they mean the same, then use only one; if they mean sth
different then let’s discuss during our next meeting how to
position the two versions estimated by our method and the
input DeFMO masks [30] Vitto: too abrupt; tell that you
first run DeFMO etc.:

LS = 1�
Z 1

0
IoU

M⌧ ,RS

✓
M
⇣
⇥,Q(⌧), T (⌧)

⌘◆!
d⌧.

(8)

Furthermore, we add the commonly employed [2, 13,
26, 31, 40] total variation and Laplacian regularizers. Total
variation LT (⇥) on texture maps encourages the model to
produce smooth textures, and Laplacian regularizer LL(⇥)
promotes smooth meshes.

Finally, the joint loss is a weighted sum of all four loss
terms:

L(⇥,⌦, ✏|V,B) = �V · LV (⇥,⌦, ✏|V,B) + LT (⇥)+

+ LS(⇥,⌦, ✏|V,B) + �L · LL(⇥) .

(9)

Optimization. Fig. 2 shows an overview of the pipeline.
We backpropogate the joint loss up to the mesh ⇥, mo-
tion parameters ⌦, and exposure fraction ✏. Optimization
is done with ADAM [12] using a learning rate of 0.1. At

4

Laplacian shape
regulariation loss

Table 1: Evaluation on FMO benchmark. The best-performing method is highlighted. Classical
deblurring methods [2, 3] do not estimate the object trajectory, thus their TIoU is not defined (N / A).
The datasets are sorted from the most challenging one [21] to the easiest one [18] from left to right.

Method Falling Objects [21] TbD-3D Dataset [22] TbD Dataset [18]

TIoU" PSNR" SSIM" TIoU" PSNR" SSIM" TIoU" PSNR" SSIM"
Jin et al. [3] N / A 23.54 0.575 N / A 24.52 0.590 N / A 24.90 0.530
DeblurGAN [2] N / A 23.36 0.588 N / A 23.58 0.603 N / A 24.27 0.537
TbD [18] 0.539 20.53 0.591 0.598 18.84 0.504 0.542 23.22 0.605
TbD-3D [22] 0.539 23.42 0.671 0.598 23.13 0.651 0.542 25.21 0.674

DeFMO [11] 0.684 26.83 0.753 0.879 26.23 0.699 0.550 25.57 0.602
SfB (ours) 0.701 27.18 0.760 0.921 26.54 0.722 0.610 25.66 0.659

Joint loss. The joint loss is a weighed sum of the image formation loss (5), the silhouette consis-160

tency (6), Laplacian shape regularization, and texture smoothness:161

L = LI(⇥, r,�r, t,�t; I, B) + LS(⇥, r,�r, t,�t) + LT (⇥) + �L · LL(⇥) . (7)

We infer the parameters {⇥, r,�r, t,�t} describing the object texture, shape and motion by test-time162

optimization on the input image I and background B.163

Technical details. The weight of the Laplacian shape regularization is set to �L = 1000. There are164

no weights for other terms since the default unit weight produced good results. We use the Kaolin [38]165

implementation of DIB-R [23], and set the smoothness term for soft mask rasterization to 7000�1.166

We use a median of the previous five frames in a video as an approximation of the background.167

3.2 Loss optimization168

We optimize the joint loss (7) using ADAM [39] with the fixed learning rate 0.1 for 500 iterations169

in the PyTorch [40] framework. This is made possible by using a differentiable renderer, which170

enables to compute gradients of the rendered image w.r.t. the object parameters. Optimization for171

500 iterations of a mesh with 1212 vertices, 2420 faces, 100⇥ 100 texture map, and input image of172

240⇥ 320 pixels takes around 60 seconds on a single 8 GB Nvidia GTX 1080 GPU.173

Prototypes. We provide the method with a set of three prototypes. The best prototype is automati-174

cally selected based on the lowest value of the image formation loss (5) after optimization starting175

from each prototype in turn. The first prototype is a sphere with 1212 vertices, 2420 faces, and simple176

spherical projection texture mapping. The second prototype is a bigger sphere with 1538 vertices,177

3072 faces, and with more sophisticated Voronoi texture mapping [41]. The third prototype is a torus178

with a similar number of vertices and faces and the same Voronoi mapping.179

Normalization. The mesh vertices are normalized to zero center of mass and unit variance,180

maintaining the normalization throughout the whole optimization process. Texture values are181

normalized by Sigmoid activation. Translation vectors t and t+�t are estimated as a hyperbolic182

tangent (tanh) activation with normalization such that the 2D object projection is always visible in183

the image, i.e. (�1,�1) is the bottom left corner of the image, (1, 1) is the top right corner, a z184

coordinate of �1 indicates an object covering the whole field-of-view (FOV), and z = 1 indicates185

covering 5% of FOV. Rotations r,�r are represented by quaternions, and �r is capped to represent186

at most 120 degrees total rotation. The mesh is initialized with a uniform grey texture, zero vertex187

offsets, zero rotation, zero translation, and placed in the center of the image.188

To summarize, the proposed method estimates the object’s textured mesh ⇥ and its motion189

{r,�r, t,�t} by test-time optimization. The input image is explained by these object parame-190

ters by minimizing the joint loss (7) that consists of the image formation loss (5) and suitable191

regularizers.192

4 Evaluation193

Datasets. We evaluate our method on four datasets. Three datasets are real-world ones from the194

FMO deblurring benchmark [11]: TbD [18], TbD-3D [22], and Falling Objects [21]. The fourth195

6

Texture
smoothness loss

Table 1: Evaluation on FMO benchmark. The best-performing method is highlighted. Classical
deblurring methods [2, 3] do not estimate the object trajectory, thus their TIoU is not defined (N / A).
The datasets are sorted from the most challenging one [21] to the easiest one [18] from left to right.

Method Falling Objects [21] TbD-3D Dataset [22] TbD Dataset [18]

TIoU" PSNR" SSIM" TIoU" PSNR" SSIM" TIoU" PSNR" SSIM"
Jin et al. [3] N / A 23.54 0.575 N / A 24.52 0.590 N / A 24.90 0.530
DeblurGAN [2] N / A 23.36 0.588 N / A 23.58 0.603 N / A 24.27 0.537
TbD [18] 0.539 20.53 0.591 0.598 18.84 0.504 0.542 23.22 0.605
TbD-3D [22] 0.539 23.42 0.671 0.598 23.13 0.651 0.542 25.21 0.674

DeFMO [11] 0.684 26.83 0.753 0.879 26.23 0.699 0.550 25.57 0.602
SfB (ours) 0.701 27.18 0.760 0.921 26.54 0.722 0.610 25.66 0.659

Joint loss. The joint loss is a weighed sum of the image formation loss (5), the silhouette consis-160

tency (6), Laplacian shape regularization, and texture smoothness:161

L = LI(⇥, r,�r, t,�t; I, B) + LS(⇥, r,�r, t,�t) + LT (⇥) + �L · LL(⇥) . (7)

We infer the parameters {⇥, r,�r, t,�t} describing the object texture, shape and motion by test-time162

optimization on the input image I and background B.163

Technical details. The weight of the Laplacian shape regularization is set to �L = 1000. There are164

no weights for other terms since the default unit weight produced good results. We use the Kaolin [38]165

implementation of DIB-R [23], and set the smoothness term for soft mask rasterization to 7000�1.166

We use a median of the previous five frames in a video as an approximation of the background.167

3.2 Loss optimization168

We optimize the joint loss (7) using ADAM [39] with the fixed learning rate 0.1 for 500 iterations169

in the PyTorch [40] framework. This is made possible by using a differentiable renderer, which170

enables to compute gradients of the rendered image w.r.t. the object parameters. Optimization for171

500 iterations of a mesh with 1212 vertices, 2420 faces, 100⇥ 100 texture map, and input image of172

240⇥ 320 pixels takes around 60 seconds on a single 8 GB Nvidia GTX 1080 GPU.173

Prototypes. We provide the method with a set of three prototypes. The best prototype is automati-174

cally selected based on the lowest value of the image formation loss (5) after optimization starting175

from each prototype in turn. The first prototype is a sphere with 1212 vertices, 2420 faces, and simple176

spherical projection texture mapping. The second prototype is a bigger sphere with 1538 vertices,177

3072 faces, and with more sophisticated Voronoi texture mapping [41]. The third prototype is a torus178

with a similar number of vertices and faces and the same Voronoi mapping.179

Normalization. The mesh vertices are normalized to zero center of mass and unit variance,180

maintaining the normalization throughout the whole optimization process. Texture values are181

normalized by Sigmoid activation. Translation vectors t and t+�t are estimated as a hyperbolic182

tangent (tanh) activation with normalization such that the 2D object projection is always visible in183

the image, i.e. (�1,�1) is the bottom left corner of the image, (1, 1) is the top right corner, a z184

coordinate of �1 indicates an object covering the whole field-of-view (FOV), and z = 1 indicates185

covering 5% of FOV. Rotations r,�r are represented by quaternions, and �r is capped to represent186

at most 120 degrees total rotation. The mesh is initialized with a uniform grey texture, zero vertex187

offsets, zero rotation, zero translation, and placed in the center of the image.188

To summarize, the proposed method estimates the object’s textured mesh ⇥ and its motion189

{r,�r, t,�t} by test-time optimization. The input image is explained by these object parame-190

ters by minimizing the joint loss (7) that consists of the image formation loss (5) and suitable191

regularizers.192

4 Evaluation193

Datasets. We evaluate our method on four datasets. Three datasets are real-world ones from the194

FMO deblurring benchmark [11]: TbD [18], TbD-3D [22], and Falling Objects [21]. The fourth195

6

Silhouette loss

ae
ro

bi
e

De
FM

O
[1

1]

0.8
26

31
.98

Sf
B

(o
ur

s)

0.8
49

33
.07

GT

vo
lle

yb
all

De
FM

O
[1

1]

0.7
67

25
.29

Sf
B

(o
ur

s)

0.9
08

28
.11

GT

fo
ot

ba
ll

De
FM

O
[1

1]

0.6
63

27
.21

Sf
B

(o
ur

s)

0.8
23

29
.41

GT

SS
IM

":
PS

NR
":

B Î / I Temporal super-resolution

Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU

⇣
M⌧ ,RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�⌘
d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159

5

Input Video with Blurred Object

Modeling
Mesh Θ: prototype index, vertex offsets, texture map.
Fixed mesh parameters: faces, initial vertex positions, texture mapping.

Motion Ω: continuous 3D translation and 3D rotation.
They are modelled by piece-wise polynomials to allow for bounces
(abrupt motion changes), acceleration, and other forces.

Exposure gap 𝜖: real-valued parameter that denotes fraction of time
when camera shutter is closed.
We estimate it automatically as part of the proposed optimization.

TIoU" PSNR" SSIM"

fu
ll SfB [1] 0.921 26.54 0.722

MfB (ours) 0.927 26.57 0.728

bn
c
±
1 SfB [1] 0.892 21.77 0.628

MfB (ours) 0.902 25.01 0.643

bn
c
±
0 SfB [1] 0.863 20.77 0.595

MfB (ours) 0.889 24.57 0.620

et # er # e⇥ #

<
9
0
� SfB [1] 37.8 % 10.9� 3.0 %

MfB (ours) 20.0 % 6.4� 2.7 %

<
3
0
� SfB [1] 12.8 % 4.8� 2.3 %

MfB (ours) 8.8 % 3.7� 2.2 %

Table 1: deblurring quality at bounces.
Table 2: evaluating 3D translation, 3D rotation, and 3D shape
on a synthetic dataset.

Ø More complete 3D reconstruction, especially on back sides.
Ø Bounce detection and sharper deblurring.

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Input Shape & Motion Novel views Temporal SR

Ø If we knew values of all parameters, we could render the input video!
Ø Strict generalization of [1], who did it for a single frame and linear motion.

Many frames Exposure gap More complex motion

Shared parameters across framesDifferentiable rendering

Motion function

Motion blur (averaging)

Video formation with motion-blurred objects

Quantitative results
Ø New state-of-the-art on fast moving object deblurring benchmark [2].
Ø Compared to a single-frame approach [1]:

